Sáng kiến kinh nghiệm Một số phương pháp mới để giúp học sinh lớp 11 giải bài toán hình học không gian
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Một số phương pháp mới để giúp học sinh lớp 11 giải bài toán hình học không gian", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Một số phương pháp mới để giúp học sinh lớp 11 giải bài toán hình học không gian
MỤC LỤC Phần 1: Mở đầu..................................................................................................................2 1. Lý do chọn đề tài............................................................................................................2 2. Mục đích nghiên cứu......................................................................................................2 3. Đối tượng và phạm vi nghiêm cứu................................................................................2 4. Phương pháp nghiên cứu...............................................................................................2 Phần 2: Nội dung................................................................................................................3 Chương 1: Cơ sỡ lý luận....................................................................................................3 Chương 2: Cơ sỡ thực tiễn.................................................................................................3 Chương 3: Biện pháp giải quyết vấn đề ..........................................................................3 Bài toán 1: Tìm giao tuyến của hai mặt phẳng (α) và ()...............................................4 Bài toán 2: Tìm giao điểm của đường thẳng d và mặt phẳng (α)..................................7 Bài toán 3: Chứng minh đường thẳng d song song với mặt phẳng (α)........................11 Bài toán 4: Chứng minh hai mặt phẳng (α) và () song song nhau.............................14 Bài tập rèn luyện...............................................................................................................16 1 Phần 2: NỘI DUNG Chương 1: Cơ sở lý luận Khi giải một bài toán về chứng minh quan hệ song song trong hình học không gian, ta phải đọc kỹ đề, phân tích giả thuyết, kết luận, vẽ hình đúng, Ta cần phải chú ý đến các yếu tố khác : Vẽ hình như thế tốt chưa? Cần xác định thêm các yếu tố nào trên hình không? Để giải quyết vấn đề ta xuất phát từ đâu? Nội dung kiến thức nào liên quan đến bài toán, .có như thế mới giúp ta giải quyết được nhiều bài toán mà không gặp khó khăn. Ngoài ra ta còn phải nắm vững kiến thức trong hình học phẳng, phương pháp chứng minh cho từng dạng toán: tìm giao tuyến của hai mặt phẳng, tìm giao điểm của đường thẳng và mặt phẳng, chứng minh hai đường thẳng song song, hai mặt phẳng song song, đường thẳng song song với mặt phẳng. Chương 2: Cơ Sở thực tiễn Qua quá trình giảng dạy tôi nhận thấy nhiều học sinh khi gặp các bài toán về chứng minh quan hệ song song trong hình học không gian các em học sinh không biết vẽ hình, còn lúng túng, không phân loại được các dạng toán, chưa định hướng được cách giải. Trong khi đó bài toán liên quan đến chứng minh quan hệ song song trong hình học không gian có rất nhiều dạng bài tập khác nhau, nhưng chương trình hình học không gian 11 không nêu cách giải tổng quát cho từng dạng, bên cạnh đó thời lượng dành cho tiết luyện tập là rất ít. Qua việc khảo sát định kỳ nhận thấy nhiều học sinh trình bày lời giải chưa lôgic hoặc không làm được bài tập liên quan đến chứng minh quan hệ song song trong hình học không gian. Khi giải các bài toán hình học không gian các giáo viên và học sinh thường gặp một số khó khăn với nguyên nhân như sau: Học sinh cần phải có trí tưởng tượng không gian tốt; Học sinh quen với hình học phẳng nên khi học các khái niệm của hình không gian hay nhầm lẫn, chưa biết vận dụng các tính chất của hình học phẳng cho hình không gian; Một số bài toán không gian thì các mối liên hệ giữa giả thiết và kết luận chưa rõ ràng làm cho học sinh lúng túng trong việ định hướng cách giải; Bên cạnh đó còn có nguyên nhân như các em chưa xác định đúng động cơ học tập. Từ những nguyên nhân trên tôi mạnh dạn đưa ra một số giải pháp nhằm nâng cao kỹ năng giải toán hình học không gian cho học sinh lớp 11CB Chương 3: Biện pháp giải quyết vấn Đề. Để giải được bài hình học tố theo tôi nghĩ có một số giải pháp tăng cường kỹ năng kiến thức cho học sinh đó là: Vẽ hình đúng – trực quan nó gợi mở và tạo điều kiện thuận lợi cho việc giải các bài toán và phát huy trí tưởng tượng không gian, phát huy tính tích cực và niềm say mê học tập của học sinh. Vẽ đúng – trực quan hình vẽ giúp học sinh tránh được các sai lầm đáng tiếc. Tăng cường vấn đáp nhằm giúp học sinh hiểu rõ các khái niệm trong hình học không gian như : hình chóp; tứ diện; hình chóp đều; hình lăng trụ; hình hộp; hình hộp chữ nhật; .; quan hệ song song của hai đường thẳng; hai mặt phẳng; đường thẳng và mặt phẳng, Sử dụng đồ dùng dạy học một cách hợp lý như các mô hình trong không gian, các phần mềm giảng dạy như: Cabir, GSP, .. 3 Hình 5 Hình 6 Hình 7 * Nhận xét: Để tìm giao tuyến của hai mặt phẳng ta ưu tiên cho cách 1 là tìm hai điểm chung lần lượt nằm trên hai mặt phẳng đó bằng cách dựa vào hình vẽ. Nếu hình vẽ chỉ có một điểm chung thì ta chuyển sang cách hai ( dựa vào các định lý và hệ quả trên) * Ví dụ: Bài 1: Trong mp(α) cho tứ giác ABCD có AB và CD cắt nhau tại E, AC và BD cắt nhau tại F. Gọi S là một điểm nằm ngoài mp(α). Tìm giao tuyến của các mp sau: a) mp(SAC) và mp(SBD) b) mp(SAB) và mp(SCD) c) mp(SEF) và mp(SAD) Nhận xét: Với câu a, b học sinh dễ dàng tìm được giao tuyến. Với câu c GV cần gợi ý cho HS phát hiện ra được điểm chung thứ hai. Lời giải: a) Ta có S (SAC) (SBD) (1) ; F = AC BD F (SAC) (SBD) (2) Từ (1) và (2) suy ra : SF = (SAC) (SBD). b) Ta có S (SAB) (SCD) (1) ; E = AB CD E (SAB) (SCD) (2) Từ (1) và (2) suy ra : SE = (SAB) (SCD). c) Trong mp(ADE) kéo dài EF cắt AD tại N. Xét hai mp(SAD) và (SEF) có: 5 R ( ) (SAC) Ta có : // SA SA (SAC) ( ) (SAC) = RQ với RQ // SA b. Xác định thiết diện của hình chóp với ( ): b. Đoạn chung của ( ) và các mặt phẳng (SAB) ;(SCD) ; (SBC) ;(ABCD) trong S.ABCD lần lượt là MP ; QN ; PQ ; MN. Vậy nên thiết diện là tứ giác MPQN c. Tìm điếu kiện của MN để thiểt diện là hình thang: MP // QN (1) Ta có : MPQN là hình thang MN // PQ (2) SA // MP Xét (1) ,ta có SA// QN MP//QN SA// QN Do đó : SA//(SCD) ( vô lí ) QN (SCD) BC (ABCD) (SBC) Xét (2) ,ta có MN (ABCD) MN // BC PQ (SBC) PQ (SBC) Ngược lại, nếu MN // BC thì MB ( ) MN // PQ BC (SBC) Vậy để thiết diện là hình thang thì MN // BC. Bài toán 2 : Tìm giao điểm của đường thẳng d và mp(α). Hình 8 Hình 9 Phương pháp : Muốn tìm giao điểm của đường thẳng d với mp(α) ta tìm giao điểm của đường thẳng d với một đường thẳng a nằm trên mp(α). (hình 8) A d Tóm tắt : Nếu thì A = d (α) A a ( ) * Chú ý: Nếu đường thẳng a chưa có trên hình vẽ thì ta tìm a như sau: - Tìm mp() chứa d sao cho mp() cắt mp(α). - Tìm giao tuyến a của hai mp(α) và mp(). (hình 9) * Nhận xét : Vấn đề của bài toán là xác định cho được đường thẳng a. Nhiệm vụ của giáo viên là hướng dẫn, gợi mở cho học sinh biết cách tìm đường thẳng a và chọn mp() sao 7 Câu c) - Tương tự câu a) ta cần chọn mp phụ chứa SC và tìm giao tuyến của mp đó với mp(IJM). Có mp nào chứa SC? - GV hướng dẫn HS chọn mp nào cho việc tìm giao tuyến với (IJM) thuận lợi. Lời giải: a) Ta có BM (SBD) Xét 2 mp(SAC) và (SBD) có S là điểm chung thứ nhất (1) Gọi O = AC BD O là điểm chung thứ hai (2) Từ (1) và (2) SO = (SAC) (SBD). Trong mp(SBD) có BM cắt SO tại P. Vậy P = BM (SAC). b) Ta có IM (SAD) Xét hai mp(SAD) và (SBC) có: S là điểm chung thứ nhất Gọi E = AD BC E là điểm chung thứ hai SE = (SAD) (SBC). Trong mp(SAE) có IM cắt SE tại F. Vậy F = IM (SBC) c) Ta có SC (SBC) Xét 2 mp(IJM) và (SBC) ta có : JF = (IJM) (SBC) Trong mp(SBE) có JF cắt SC tại H. Vậy H = SC (IJM). Bài 3 : Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là điểm thuộc miền trong của SCD. a) Tìm giao điểm N của đường thẳng CD và mp(SBM) b) Tìm giao tuyến của hai mp(SBM) và (SAC) c) Tìm giao điểm I của đường thẳng BM và mp(SAC) d) Tìm giao điểm P của đường thẳng SC và mp(ABM), từ đó suy ra giao tuyến của hai mp(SCD) và (ABM). e) Xác định thiết diện của hình chóp cắt bởi mp(ABM). 9 I SO mà SO (SAC) I (SAC) I là điểm chung của ( SAC ) và (MNP) ( SAC) (SBD) = MI - Trong (SAC), gọi Q = SC MI Q SC Q MI mà MI (MNP) Q (MNP) Vậy: Q = SC (MNP) Bài tập rèn luyện : Bài 1 : Cho hình bình hành ABCD nằm trên mp(P) và một điểm S nằm ngoài mp(P). Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O. a) Tìm giao điểm của đường thẳng SO với mp(CMN) b) Tìm giao tuyến của hai mp(SAD) và (CMN) c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mp(CMN) Bài 2: Cho hình chóp S.ABCD.Trong SBC lấy điểm M, trong SCD lấy điểm N. a) Tìm giao điểm của đường thẳng MN với mp(SAC) b) Tìm giao điểm của SC với mp(AMN) c) Tìm thiết diện của hình chóp cắt bởi mp(AMN). Bài 3: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD. Gọi E là điểm thuộc đoạn AN ( không là trung điểm AN) và Q là điểm thuộc đoạn BC. a) Tìm giao điểm của EM với mp(BCD) b) Tìm giao tuyến của hai mp(EMQ) và (BCD) ; (EMQ) và (ABD) c) Tìm thiết diện cắt tứ diện bởi mp(EMQ). Bài 4: Cho tứ giác ABCD và một điểm S không thuộc mp (ABCD). Trên đoạn AB lấy một điểm M ,Trên đoạn SC lấy một điểm N (M, N không trùng với các đầu mút). a) Tìm giao điểm của đường thẳng AN với mặt phẳng (SBD) b) Tìm giao điểm của đường thẳng MN với mặt phẳng (SBD). Bài toán 3: Chứng minh đường thẳng d song song với mp(α) * Phương pháp: (Định lí 1 SGK trang 61) d ( ) Tóm tắt: Nếu d / /a thì d // (α) a ( ) Nhận xét: Vấn đề nêu lên ở đây là đường thẳng a có trên hình vẽ hay chưa, nó được xác định như thế nào, làm thế nào để xác định được nó. GV cần làm cho HS biết hướng giải quyết của bài toán là dựa vào giả thiết của từng bài toán C' H mà xác định đường thẳng a như thế nào cho phù hợp. A' Ví dụ: B' Bài 1: Cho hình lăng trụ tam giác ACB.A’B’C’. Gọi H là trung điểm của A’B’. I a) Tìm giao tuyến của hai mp(AB’C’) và (ABC). b) Chứng minh rằng CB’ // (AHC’) Lời giải: C A x 11 B
File đính kèm:
- sang_kien_kinh_nghiem_mot_so_phuong_phap_moi_de_giup_hoc_sin.doc