Sáng kiến kinh nghiệm Từ kiến thức cơ bản về diện tích hình tam giác phát triển, nâng cao để bồi dưỡng học sinh năng khiếu toán
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Từ kiến thức cơ bản về diện tích hình tam giác phát triển, nâng cao để bồi dưỡng học sinh năng khiếu toán", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Từ kiến thức cơ bản về diện tích hình tam giác phát triển, nâng cao để bồi dưỡng học sinh năng khiếu toán
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO DIỄN CHÂU TRƯỜNG TIỂU HỌC DIỄN NGỌC 2 ---------- SÁNG KIẾN KINH NGHIỆM TỪ KIẾN THỨC CƠ BẢN VỀ DIỆN TÍCH HÌNH TAM GIÁC PHÁT TRIỂN, NÂNG CAO ĐỂ BỒI DƯỠNG HỌC SINH NĂNG KHIẾU TOÁN Người thực hiện: Vò ThÞ Minh Điện thoại: 01683949237 1 - Trong một tam giác ta có thể chọn bất kì một cạnh nào đó làm cạnh đáy, từ đỉnh đối diện với cạnh đáy kẻ một đường thẳng vuông góc với đáy ta được đường cao của tam giác - Cách kẻ đường cao: Đặt một cạnh góc vuông của eke trùng với đỉnh của tam giác, cạnh góc vuông kia trùng cạnh đối diện với đỉnh để vẽ. Thế nhưng khi vận dụng vào làm một số bài tập các em không khỏi lúng túng nhất là trường hợp đường cao nằm ngoài tam giác. Còn cách tính diện tích hình tam giác đã được sách giáo khoa giới thiệu cách tính diện tích khi đã biết đáy và chiều cao của nó. Nhưng trong thực tế ta có thể tính diện tích hình tam giác bằng cách so sánh diện tính. Do đó áp dụng để làm một số bài tập cụ thể, học sinh vẫn không tránh khỏi những khó khăn, lúng túng đặc biệt là trường hợp tính diện tích hình tam giác khi mà ta chưa biết cụ thể độ dài đáy và chiều cao của nó. Cụ thể, sau khi học xong phần diện tích hình tam giác các em áp dụng làm một số bài tập đơn giản như sách giáo khoa, tôi đã cho học sinh lớp bồi dưỡng khảo sát qua một số bài tập nhỏ (trong thời gian 40 phút) như sau: Bài 1: (30. điểm): Nêu tên cạnh đáy và đường cao tương ứng trong mỗi hình tam giác. D A M I K S T E G L P B H C N Hình 1 Hình 2 Hình 3 Q Bài 2: (2.0 điểm): Cho hình thang vuông ABCD (xem hình vẽ) có AB = 12cm, DC = 15cm, A B AD = 13cm. Nối D với B được hai tam giác ABD và BDC. a) Tính diện tích mỗi tam giác đó? b) Tính tỉ số phần trăm của diện tích hình tam giác D C ABD và diện tích hình tam giác BDC. A Bài 3 (2,5 điểm): Cho hình tam giác ABC có diện tích 24cm2. Nếu kéo dài đáy BC thêm một đoạn 24cm2 dài 2cm thì diện tích tăng thêm là bao nhiêu? Biết B 8cm C 2cm D 3 * Ở bài tập 3, phần lớn các em tìm ra đáp số nhưng nhiều em lý luận chưa chặt chẽ. Cũng như ở bài 1 các em chưa biết tìm diện tích phần mở rộng bằng cách dựa vào tỉ số độ dài hai đáy. * Sang bài tập 4 đa số các em vẽ hình đúng, đẹp và chính xác nhưng không có em nào tính được diện tích tam giác ABC bởi vì để giải được bài này thì đòi hỏi các em phải nắm vững mối quan hệ giữa các yếu tố trong một tam giác đáy (đáy, chiều cao tương ứng với đáy và diện tích). Ta thấy trong thực tiễn dạy toán, không phải bài toán nào cũng ở dạng tường minh như bài tập 2 và 3 chỉ cần dựa vào công thức là tính ngay được kết quả. Đặc biệt là trong quá trình dạy bồi dưỡng học sinh năng khiếu, để đáp ứng được nhu cầu học tập của học sinh, giáo viên phải sưu tầm, thiết kế những bài toán nâng cao hơn, khái quát hơn thường những bài toán được “ngụy trang “ bởi những điều kiện chưa tường minh. Bởi vậy sẽ không tránh khỏi những vướng mắc, khó khăn nếu giáo viên không có phương pháp giúp học sinh nắm vững mối quan hệ giữa các yếu tố trong một tam giác. Trong quá trình nghiên cứu và qua thực tế giảng dạy nhiều năm, đặc biệt là qua hai năm thực hiện chương trình thay sách lớp 5 tôi thấy khó khăn nhất khi dạy các toán về tam giác vẫn là những trường hợp sau đây. - Trường hợp 1: Vẽ đường thẳng để chia tam giác đã cho thành các phần theo một tỉ lệ diện tích nào đó. + Ví dụ 1: Cho tam giác ABC, qua đỉnh A vẽ một đường thẳng cắt cạnh 1 BC tại điểm D sao cho diện tích tam giấc ABD bằng diện tích tam giác ADC. 5 + Ví dụ 2: Cho tam giác ABC. Hãy kẻ một đường thẳng cắt hai cạnh của tam giác để chia tam giác ABC thành hai phần sao cho diện tích phần này bằng 1 diện tích phần kia. 8 - Trường hợp 2: Tính diện tích tam giác khi chưa biết độ dài cạnh đáy và chiều cao của nó. Để tính được diện tích hình này phải dựa vào diện tích và tỉ lệ giữa độ dài đáy và chiều cao của tam giác khác. Ví dụ 1: Cho tam giác ABC có diện tích 780cm2. Trên cạnh AB lấy điểm E sao cho AE = 3BE. Trên cạnh AC lấy điểm D sao cho CD = 3AD. Nối BD và CE cắt nhau tại I. a) So sánh diện tích hai tam giác ABD và BCE 5 - Thông qua một số hình vẽ hướng dẫn các em xác định đúng các yếu tố của tam giác (cụ thể là đáy và chiều cao tương ứng với đáy). - Từ những ví dụ cụ thể giúp học sinh tìm ra mối quan hệ các yếu tố của tam giác (đáy, chiều cao tương ứng với đáy và diện tích). - Vận dụng hiểu biết mối quan hệ đó để thực hành một số bài toán liên quan. Cụ thể: 1. Củng cố về cách xác định đáy và kẻ đường cao tương ứng với đáy thông qua một số hình vẽ: - Trước hết phải cho học sinh nhắc lại cách A xác định đáy và vẽ đường cao tương ứng với đáy. Sau đó giáo viên vẽ hình tam giác yêu cầu học sinh xác định các đáy và dùng eke để vẽ các đường cao B C của tam giác đó. Hỏi: - Trong tam giác ABC nếu chọn BC làm đáy thì đỉnh đối diện với đáy BC là đỉnh nào? (đỉnh A). - Nếu chọn AC làm đáy thì đỉnh đối diện với cạnh AC là đỉnh nào? (đỉnh B) - Nếu chọn cạnh AB là đáy thì đỉnh đối diện với cạnh AB là đỉnh nào? (đỉnh C). Sau đó yêu cầu học sinh kẻ các đường cao tương ứng với các đáy AB, AC, BC Qua hình vẽ trên ta thấy cả 3 đường cao đều nằm trong tam giác. Vậy đường cao nằm ngoài tam giác ta vẽ như thế nào? Giáo viên vẽ tiếp tam giác MNQ lên bảng Hỏi: Muốn vẽ đường cao tương ứng với đáy QN ta phải xác định được cái gì? (đỉnh đối diện với đáy M QN đó là đỉnh M) Giáo viên hướng dẫn dùng đường kẻ phụ: kéo dài đáy QN về phía Q sau đó dùng eke để vẽ. H N Q Tiếp tục yêu cầu học sinh vẽ đường cao tương ứng với đáy QM (kéo dài đáy QM một đoạn về phía Q I rồi dùng eke để vẽ). 7 Nêu tên những tam giác có chung cạnh đáy EC? * Sau khi học sinh xác định được những tam giác có chung đáy, có chung chiều cao, để tính được diện tích các hình tam giác liên quan, giáo viên phải giúp học sinh nắm được mối quan hệ giữa các yếu tố trong tam giác (đáy, chiều cao và diện tích). 2. Mối quan hệ giữa các yếu tố trong tam giác. Bài toán 1: Tam giác ABC có đáy BC bằng 20cm và chiều A cao tương ứng với đáy là 8cm. Kéo dài đáy BC thêm một đoạn CD 5cm nữa thì diện tích sẽ tăng 8cm thêm là bao nhiêu? B H 20cm C 5cm D Bài toán này được học sinh khá dễ dàng giải được. Cách 1: Diện tích tam giác ABC là : (20 x 8) :2 = 80 (cm2) Khi mở rộng đáy thêm 5cm thì phần mở rộng có dạng là một hình tam giác và chiều cao phần mở rộng bằng chính chiều cao tam giác ban đầu (bằng chiều cao hạ từ đỉnh A xuống BD). Độ dài đoạn BD là: 20 + 5 = 25 (cm) Diện tích tam giác ABD là: 25 x 8 : 2 = 100 (cm2) Diện tích tăng thêm là: 100 – 80 = 20 (cm2) Đáp số : 20cm2 Cách 2: Chiều cao phần mở rộng chính bằng chiều cao tam giác ban đầu ( bằng chiều cao hạ từ đỉnh A xuống BD). Diện tích phần mở rộng là: 5 x 8 : 2 = 20 (cm2) Đáp số: 20 cm2 Việc quan trọng ở đây là học sinh xác định được hai tam giác ABC và ACD có chung chiều cao (chiều cao hạ từ đỉnh A xuống BD). Từ bài toán trên hỏi: 1 Em hãy so sánh đáy phần mở rộng và đáy phần tam giác ban đầu? (5:20 = ) 4 Diện tích phần mở rộng so với diện tích hình tam giác ban đầu thì như thế 1 nào? (20:80 = ) 4 9 Ta có bài toán 3: Một thửa ruộng hình tam giác có đáy dài 20m. Người ta mở rộng đáy thêm một đoạn để có diện tích phần mở rộng bằng 25% diện tích ban đầu. Tính độ dài đáy phần mở rộng, biết rằng sau khi mở rộng thửa ruộng vẫn là hình tam giác. Hỏi: Tỉ số diện tích phần mở rộng và diện tích thửa ruộng ban đầu là bao nhiêu? (25%) A Vậy tỉ số đáy của phần mở rộng và đáy thửa ruộng ban đầu sẽ như thế nào? (cùng bằng 25%) B C D Dựa vào quan hệ tỉ lệ giữa đáy và diện tích, các em sẽ dễ dàng giải được. Từ bài toán 3, hỏi: * Nếu biết được độ dài đáy phần mở rộng và biết tỉ số diện tích tam giác của phần mở rộng và diện tích tam giác ban đầu ta có thể tính độ dài đáy ban đầu không? Ta có bài toán 4: Nhà bác An có một thửa ruộng hình tam giác. Nay do làm đường nên bị xén vào thửa ruộng đó một phần đất hình tam giác (hình vẽ) có đỉnh là đỉnh của 1 thửa đất, diện tích bị xén vào bằng diện tích ban đầu. 5 Tính độ dài đáy của mảnh đất còn lại biết rằng mảnh đất bị xén đi có đáy là 5m. A Từ hiểu biết về mối quan hệ giữa độ dài đáy và diện tích, các em sẽ giải được. B C D Phần bị xén đi và phần đất còn lại có dạng là một hình tam giác. Ta xem đáy tam giác đó là 5m thì chiều cao sẽ bằng chiều cao phần đất còn lại (bằng chiều cao hạ từ đỉnh A xuống BC). 1 1 Theo bài ra phần đất bị xén đi bằng diện tích ban đầu hay bằng diện 5 4 tích đất còn lại. 1 Do đó đáy của phần đất bị xén đi bằng đáy của phần đất còn lại. 4 11 - Chiều cao BC của tam giác BCD gấp mấy lần chiều cao AD của tam 3 giác ADC? (9:6 = lần) 2 - Diện tích tam giác BCD gấp mấy lần diện tích tam giác ADC? (36:24 = 3 lần). 2 - Vậy hai tam giác có chung đáy (đáy bằng nhau) thì diện tích và chiều cao có quan hệ như thế nào? (quan hệ cùng tăng hoặc cùng giảm). Rút ra kết luận 2: Hai tam giác A và B có chung đáy (đáy bằng nhau) thì: Chiều cao tam giác A Diện tích tam giác A = Chiều cao tam giác B Diện tích tam giác B Từ bài toán trên, hỏi: Nếu ta biết tỉ lệ chiều cao của hai tam giác và biết diện tích của một trong hai tam giác đó ta có thể tính được diện tích của tam giác còn lại hay không? Ta có bài toán 2: Khi thiết kế xong nóc nhà hình tam giác bác An định xây nóc cao 3m, tính ra diện tích bề mặt nóc nhà là 9m 2. Như vậy phần nóc không phù hợp với ngôi 5 nhà nên bác đã hạ chiều cao của nóc xuống còn chiều cao ban đầu. Tính diện 6 tích nóc nhà bác An. Hỏi: Khi đáy nóc nhà không đổi mà ta hạ chiều cao của nóc thì diện tích bề mặt nóc nhà thay đổi như thế nào? (diện tích sẽ giảm). Tỉ số chiều cao nóc nhà sau khi hạ xuống và chiều cao dự định ban đầu là 5 bao nhiêu? ( ). 6 Vậy tỉ số diện tích bề mặt nóc nhà so với diện tích dự định ban đầu là bao 5 nhiêu? ( ). 6 Từ đó có thể tính được diện tích nóc nhà bác An hay không? Giải: Khi đáy của nóc nhà không đổi 13
File đính kèm:
- sang_kien_kinh_nghiem_tu_kien_thuc_co_ban_ve_dien_tich_hinh.doc